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A general theory of thermoacoustics is derived for arbitrary stack pores. Previous
theoretical treatments of porous media are extended by considering arbitrarily shaped
pores with the only restriction that the pore cross-sections vary slowly in the
longitudinal direction. No boundary-layer approximation is necessary. Furthermore,
the model allows temperature variations in the pore wall. By means of a systematic
approach based on dimensional analysis and small parameter asymptotics, we derive
a set of ordinary differential equations for the mean temperature and the acoustic
pressure and velocity, where the equation for the mean temperature follows as
a consistency condition of the assumed asymptotic expansion. The problem of
determining the transverse variation is reduced to finding a Green’s function for a
modified Helmholtz equation and solving two additional integral equations. Similarly
the derivation of streaming is reduced to finding a single Green’s function for the
Poisson equation on the desired geometry.

1. Introduction
The most general interpretation of thermoacoustics, as described by Rott (1980),

includes all effects in acoustics in which heat conduction and entropy variations of the
(gaseous) medium play a role. In this paper, we will focus specifically on the theoretical
basis of thermoacoustic refrigerators, heat pumps or prime movers; the devices that
exploit thermoacoustic effects to produce useful refrigeration, heating, or work.

1.1. A brief history

Thermoacoustics has a long history that dates back more than two centuries. For
the most part, heat-driven oscillations were the subject of these investigations. Some
of the earliest experiments include the Rijke tube (Rijke 1859), the Sondhauss tube
(Sondhauss 1850) and the Taconis oscillations (Taconis 1949). The reverse process,
generating temperature differences using acoustic oscillations, is a relatively new
phenomenon. In 1964, Gifford & Longsworth (1966) designed a device called the
pulse-tube refrigerator, generating significant cooling. Merkli & Thomann (1975)
presented an accurate theory for cooling in a simple cylindrical resonator.

The first qualitative explanation for thermoacoustics was given in 1887 by Lord
Rayleigh. In his classical work The Theory of Sound, Rayleigh (1945) explains the
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production of thermoacoustic oscillations as an interplay between heat fluxes and
density variations:

‘If heat be given to the air at the moment of greatest condensation (compression)
or taken from it at the moment of greatest rarefaction (expansion), the vibration
is encouraged.’

Rayleigh’s qualitative understanding turned out to be correct, but a quantitatively
accurate theoretical description of these phenomena was not achieved until much
later. After attempts by Kirchhoff (1868) and Kramers (1949), the breakthrough
came in 1969, when Rott and coworkers started a series of papers (Rott 1969,
1973, 1975; Rott & Zouzoulas 1976), in which a linear theory of thermoacoustics
was derived. The first to give a comprehensive picture, was Swift (1988). He used
Rott’s theory of thermoacoustic phenomena to design practical thermoacoustic
devices. His work includes experimental results, discussions on how to build these
devices, and a coherent development of the theory based on Rott’s work. Since
then, Swift and others have contributed much to the development of thermoacoustic
devices. Most of these results have been summarized in Garrett (2004), a review
of thermoacoustic engines and refrigerators. Swift (2002) provides a complete
introduction to thermoacoustics and treats several kinds of thermoacoustic devices.

1.2. Scope

The aim of this work is to derive a general theory of thermoacoustics. In our analysis,
we will consider porous media consisting of pores of the type discussed by Arnott,
Bass & Raspet (1991), i.e. long pores with arbitrarily shaped pore cross-sections.
We extend their results by allowing a slow variation in the pore cross-section in the
longitudinal direction. Furthermore, we will also allow temperature dependence of
the speed of sound, specific heat, viscosity and thermal conductivity and we eliminate
the restriction of constant pore-wall temperature. Then we take the next step and
explain how streaming, a non-zero steady mass flux, can be determined through
arbitrary cross-sections. Finally, we show how Green’s functions can be used to
determine the transverse variation of the variables.

The analysis presented here differs from conventional approaches in the sense that
dimensional analysis and small-parameter asymptotics are used to construct a weakly
nonlinear theory of thermoacoustics, in which streaming is systematically included.
This has two main advantages.

(i) Non-dimensionalization allows us to analyse limiting situations in which
parameters differ in orders of magnitude, so that we can study the system as a
function of parameters connected to geometry, heat transport and viscous effects.

(ii) We can give explicit conditions under which the theory is valid. Furthermore, we
can clarify under which conditions additional assumptions or approximations are justi-
fied. Olson & Swift (1994) also use dimensionless parameters to analyse thermoacous-
tic devices, but without trying to construct a complete theory of thermoacoustics.

Previous treatments with variable cross-sections have always been restricted to
widely spaced pores (boundary-layer approximation); here, no such assumption is
made. A more general formulation would allow stack geometries other than collections
of arbitrarily shaped pores. Roh, Raspet & Bass (2007), introduce tortuosity and
viscous and thermal dynamic shape factors to extend single pore thermoacoustics
to bulk porous medium thermoacoustics. Furthermore, there exist various papers on
flow through porous media with random or stochastic properties, that could also be
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applied to thermoacoustic configurations. Auriault (2002) gives a clear overview of
various techniques that can be used:

Statistic modelling (Kröner 1986);
Self-consistent models (Zaoui 1987);
Volume averaging techniques (Quintard & Whitaker 1993);
Method of homogenization for periodic structures (Auriault 1983).

In addition, Auriault (2002) gives a short explanation of how the method of
homogenization can be applied to analyse heat and mass transfer in composite
materials. A detailed discussion of methods and results from the theory of
homogenization and their applications to flow and transport in porous media can
be found in Hornung (1997). Another approach is demonstrated by Kamiński (2002)
who combines the homogenization approach with a stochastic description of the
physical parameters, to analyse viscous incompressible flow with heat transfer.

Streaming refers to a steady mass-flux density or velocity, usually of second order,
that is superimposed on the larger first-order oscillations (Nyborg 1965). With the
addition of a steady non-zero mean velocity along X, the gas moves through the
tube in a repetitive ‘102 steps forward, 98 steps backward’ manner as described by
Swift (2002). Streaming is important as a non-zero mass flux can seriously affect the
performance of a thermoacoustic device. It can cause convective heat transfer, which
can be a loss, but it can also be essential to transfer heat to and from the environment.
Backhauss & Swift (2000), in their analysis of a travelling-wave heat engine, show
how streaming can cause significant degradation of the efficiency.

The concept of mass streaming has been discussed by many other authors (e.g.
Rott 1974; Olson & Swift 1997; Bailliet et al. 2001; Waxler 2001), but restricted
to simple geometries such as cylindrical pores or parallel plates, although Olson &
Swift (1997) do allow slowly varying cross-sections in the tube. Olson & Swift (1997)
show that variable cross-sections can occur in practical geometries and can be used
to suppress streaming; a suitable asymmetry in the tube can cause counter-streaming
that balances the existing streaming in the tube. Bailliet et al. (2001) also take into
account the temperature dependence of viscosity and thermal conductivity. The same
holds for Rott (1974) and Olson & Swift (1997), but restricted to widely spaced pores.

Apart from mass streaming, many other nonlinearities can be important in practice.
Backhauss & Swift (2000), Swift (1992) and Poesse & Garrett (2000) have all shown
that at high amplitudes, measurements deviate significantly from predictions by linear
theory. Streaming, turbulence, transition effects and higher harmonics are mentioned
as main causes for these deviations. Turbulence arises at high Reynolds numbers,
where the assumption of laminar flow is no longer valid. It disrupts boundary layers
and can negatively affect the heat transfer. Turbulence may also arise owing to abrupt
changes in the shape or direction of the channels, which can cause significant losses.
Swift (2002) gives some suggestions on how to include turbulence in the modelling,
but they are by no means complete. Swift (2002) also gives an overview of other
nonlinearities and explains how to fit higher harmonics into the asymptotic framework.
Higher harmonics oscillate at integer multiples of the fundamental frequency, and
can become important at high amplitudes. Although the higher harmonics affect the
performance only in fourth-order corrections, they can interact together to form shock
waves. Gusev et al. (2000) uses asymptotic theory to analyse the forming of shock front
formations. Neither turbulence, nor the higher harmonics and resulting shock waves
are included in our analysis.

Section 2 gives a detailed description of the model and an overview of the governing
equations, boundary conditions and relevant dimensionless numbers. Then, in § 3, we
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Figure 1. Schematic view of two possible duct configurations: (a) straight or (b) looped.
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Figure 2. Porous medium modelled as a collection of arbitrarily shaped pores.
(a) Transverse cut of stack; (b) Longitudinal cut of one stack pore.

show how these equations simplify inside a narrow tube and we derive equations for
the mean and acoustic variables. In § 4 we discuss mass streaming. Then in § 5, we
derive an expression for the acoustic power and we show how it is affected by the
dimensionless parameters. Finally, in § 6 a short discussion of the results is given.

2. General thermoacoustic theory
2.1. Geometry

Thermoacoustic devices are usually of the form shown in figure 1 (Waxler 2001),
that is, a (possibly looped) duct containing a fluid (usually a gas) and a porous
solid medium, possibly with neighbouring heat exchangers. The duct endings can
be both open and closed. For the analysis here we focus on what happens inside
the porous medium. We will model the porous medium as a collection of narrow
arbitrarily shaped pores aligned in the direction of sound propagation as shown
in figure 2. Typical examples are the two-dimensional parallel plates and three-
dimensional circular or rectangular pores. Furthermore, we allow the pore boundary to
vary slowly (with respect to the channel radius) in the direction of sound propagation,
as shown in figure 2(b). The system (x, r, θ) forms a cylindrical coordinate system for
the stack pore.

In our analysis, we restrict ourselves to one stack pore and its neighbouring solid.
Let Ag(x) denote the gas cross-section and As(x) the half-solid cross-section at
position x. Let Γg denote the gas–solid interface and Γs the outer boundary of the
half-solid. We choose Γs and As such that at Γs the heat flux is zero (for straight
pores Γs is the centreline of the solid). The remaining stack pores and solid can then
be modelled by periodicity. On Γg ,

Sg(x, r, θ) := r − Rg(x, θ) = 0,
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with Rg(x, θ) the distance of Γg to the pore centreline at position x and angle θ .
Similarly on Γs ,

St (x, r, θ) := r − Rt (x, θ) = 0,

where Rt (x, θ) := Rg(x, θ) + Rs(x, θ) denotes the distance of Γs to the origin at
position x and angle θ .

Commonly, the porous medium is called a stack or a regenerator depending on
the relative pore width. Following Garrett (2004) we will use the so-called Lautrec
number NL to distinguish between the stack and regenerator. The Lautrec number is
defined as the ratio between the pore radius and the thermal penetration depth. If
NL ∼ 1, the porous medium is called a stack, and if NL � 1, it is called a regenerator.
If NL � 1, as is the case in a resonator, then there is hardly any thermoaco-
ustic effect.

2.2. Governing equations

The general equations describing the thermodynamic behaviour in the gas are the
well-known conservation laws of mass, momentum and energy (Landau & Lifshitz
1959). Introducing the convective derivative

df

dt
=

∂f

∂t
+ v · ∇f,

these equations can be written in the following form:

mass :
dρ

dt
= −ρ∇ · v, (2.1)

momentum : ρ
dv

dt
= −∇p + ∇ · τ , (2.2)

energy: ρ
dε

dt
= −∇ · q − p∇ · v + τ : ∇v. (2.3)

Here, ρ is the density, v the velocity, p the pressure, q the heat flux, T the absolute
temperature, ε the specific internal energy and τ the viscous stress tensor. For q and
τ we have the following relations:

Fourier’s heat flux model: q = −K∇T , (2.4)

Newton’s viscous stress tensor: τ = 2μD + ζ (∇ · v)I, (2.5)

where K is the thermal conductivity, D = ∇v/2 + (∇v)T /2 the strain rate tensor, and
μ and ζ the dynamic (shear) and second viscosity.

In general, the viscosity and thermal conductivity will depend on temperature. For
example, Sutherland’s formula (Licht Jr & Stechert 1944) can be used to model the
dynamic viscosity as a function of the temperature

μ = μref 1 + S/T ref

1 + S/T

(
T

T ref

)1/2

,

where μref is the value of the dynamic viscosity at reference temperature T ref and
S is Sutherland’s constant. According to Chapman & Cowling (1939), the variation
of thermal conductivity is approximately the same as the variation of the viscosity
coefficient. The thermodynamic parameters Cp , Cv , β and c may also depend on
temperature (see Appendix A). The temperature dependence of μ and K is particularly
important, as it allows investigation of Rayleigh streaming: forced convection as a
result of viscous and thermal boundary-layer phenomena.
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The equations above can be combined and rewritten (Landau & Lifshitz 1959) to
yield the following equation for the temperature in the fluid

ρCp

(
∂T

∂t
+ v · ∇T

)
= βT

(
∂p

∂t
+ v · ∇p

)
+ ∇ · (K∇T ) + τ : ∇v. (2.6)

In the solid, we only need an equation for the temperature. The temperature Ts in
the solids satisfies the diffusion equation

ρsCs

∂Ts

∂t
= ∇ · (Ks∇Ts) . (2.7)

Another useful equation, that can be derived by combining equations (2.1)–(2.3)
with the thermodynamic relations from Appendix A, describes the conservation of
energy in the following way (Landau & Lifshitz 1959):

∂

∂t

(
1
2
ρ|v|2 + ρε

)
= −∇ ·

[
v
(

1
2
ρ|v|2 + ρh

)
− K∇T − v · τ

]
, (2.8)

where h is the specific enthalpy.
The equations (2.1), (2.2), (2.6) and (2.7) can be used to determine v, p, T and Ts . We

should add an equation of state that relates the density to the pressure and temperature
in the gas. For the analysis here, it is enough to express the thermodynamic variables
ρ, s, ε and h in terms of p and T using the thermodynamic equations (A7)–(A10)
given in Appendix A. For the numerical examples given in §§ 3.4 and 5.1, it is necessary
to make a choice and we choose to impose the ideal gas law,

p = ρ(Cp − Cv)T .

However, the analysis presented here is also valid for non-ideal gases and nowhere
will we use this relation.

To distinguish between variations along and perpendicular to sound propagation
we will use a τ in the index to denote the transverse vector components. For example,
the transverse gradient and Laplace operators are introduced as follows:

∇τ = ∇ − ∂

∂x
ex, ∇2

τ = ∇2 − ∂2

∂x2
.

The equations will be linearized and simplified using the following assumptions:
(i) the temperature variations along the stack are much smaller than the average

absolute temperature;
(ii) time-dependent variables oscillate with fundamental frequency ω. At the gas–

solid interface, we impose the no-slip condition

v = 0, if Sg = 0. (2.9)

The temperatures in the solid and in the gas are coupled at the gas–solid interface Γg

where continuity of temperature and heat fluxes is required:

T = Ts, if Sg = 0, (2.10a)

K∇T · n = Ks∇Ts · n, if Sg = 0. (2.10b)

where n is a vector outward normal to the surface. The boundary Γs , with outward
surface normal n′, is chosen such that no heat flux goes through, i.e.

∇Ts · n′ = 0, if St = 0. (2.11)
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Note that since ∇Sg and ∇St are vectors normal to the surfaces we can also replace
the two flux conditions by

K∇T · ∇Sg = Ks∇Ts · ∇Sg, if Sg = 0, (2.12)

∇Ts · ∇St = 0, if St = 0. (2.13)

2.3. Non-dimensionalization

To make the above equations dimensionless, we apply a straightforward scaling
procedure. First, we scale time by the frequency of oscillations and the spatial
coordinate by a typical pore radius Rg:

x = Rgx̃, t =
1

ω
t̃. (2.14)

Note that because we consider narrow stack pores, the typical length scale of radius
variation is much larger than a radius. We therefore introduce the small parameter ε

as the ratio between a typical radius and this length scale. At Γg , we have

S̃g(X̃, r̃, θ) = r̃ − R̃g(X, θ) = 0, R̃g(X, θ) = RgRg(x, θ), X = εx̃ = Lx.

Similarly at Γs , we have

S̃t (X̃, r̃, θ) = r̃ − 1

Br

R̃t (X, θ) = 0, R̃t (X, θ) = RtRt (x, θ),

where Br = Rg/Rt is the blockage ratio. Our formal assumption of slow variation has
now been made explicit in the slow variable X.

Secondly, we rescale the remaining variables as well, using characteristic values:

u = cref ũ, vτ = εcref ṽτ , p = ρref
g (cref )2p̃, τ =

μref cref

Rg

τ̃ , (2.15a)

ρ = ρref
g ρ̃, T =

(cref )2

C
ref
p

T̃ , ρs = ρref
s ρ̃s, Ts =

(cref )2

C
ref
p

T̃s, (2.15b)

h = (cref )2h̃, ε = (cref )2ε̃, s = Cref
p s̃ (2.15c)

β =
Cref

p

(cref )2
β̃, Cp = Cref

p C̃p, Cs = Cref
s C̃s, c = cref c̃, (2.15d)

K = K ref K̃, μ = μref μ̃, ζ = ζ ref ζ̃ . (2.15e)

Thirdly, we observe that the system contains 18 parameters, in which 6 physical
dimensions are involved. The Buckingham π theorem (Buckingham 1914) implies
that the 18 parameters can be combined into 12 independent dimensionless numbers.
In table 1, a possible choice is presented. Here, the parameters δν , δζ , δk and δs are the
viscous penetration depths based on dynamic and second viscosity and the thermal
penetration depths for the fluid and solid, respectively.

δν =

√
2μref

ωρ
ref
g

, δζ =

√
2ζ ref

ωρ
ref
g

, δk =

√
2K

ref
g

ωρ
ref
g C

ref
p

, δs =

√
2K

ref
s

ωρ
ref
s C

ref
s

.

Note that 15 dimensionless numbers are introduced. Since at most 12 can be
independent, we have at least three dependent numbers. For example, Pr , Sk and η
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Symbol Formula Description

γ Cref
p /Cref

v Specific heats ratio
η (cref Rg/UL)2 ε2/M2

a

ε Rg/L Stack pore aspect ratio
φ Rs/Rg Porosity
σ K ref

s /K ref
g Ratio thermal conductivities

κ ωL/cref Helmholtz number
Br Rg/Rt Blockage ratio

Dr posc/pamb Drive ratio
Ma U/c Mach number
NL Rg/δk Lautrec number fluid
Ns Rs/δs Lautrec number solid
Pr δ2

ν/δ
2
k Prandtl number

Sk ωδk/U Strouhal number based on δk

Wo

√
2Rg/δν Womersley number based on μ

Wζ

√
2Rg/δζ Womersley number based on ζ

Table 1. Dimensionless parameters.

NL Ma ε κ Sk

�1 Regenerator Small velocities Long pores Short stack Thermoacoustic heat
flow dominates

∼1 Stack Large velocities Short pores Long stack –
�1 Resonator – – – Heat conduction

dominates

Table 2. Parameter ranges for the important dimensionless parameters.

can be expressed in the other parameters as follows

Pr =
2N2

L

W 2
o

, η =
ε2

M2
a

, Sk =
κε

NLMa

. (2.16)

The remaining 12 dimensionless numbers are independent and can be chosen
arbitrarily.

In the analysis below, we will use explicitly Ma � 1 (small velocity amplitudes) and
ε � 1 (long pores). Other important parameters in thermoacoustics are κ , Sk and NL.
κ is a Helmholtz number and is therefore a measure for the relative length of the stack
with respect to the wavelength; short stacks imply small Helmholtz numbers. In §3.2,
it will be shown that Sk is a measure for the contribution of the thermoacoustic heat
flux to the total heat flux in the stack and can be both small and large, depending on
the application. As mentioned previously, the Lautrec number distinguishes between
the porous medium being a stack (NL ∼ 1) or a regenerator (NL � 1). These limiting
cases are described in table 2.

Hereinafter, we will use dimensionless variables, but omit the tildes for convenience.
For ease of notation we also introduce the notation

∇ε = ε
∂

∂X
ex + ∇τ , vε = uex + εvτ .
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Substituting (2.15) into (2.1)–(2.3), we arrive at the following set of dimensionless
equations:

κ
∂ρ

∂t
+ v · ∇ρ = −ρ∇ · v, (2.17)

ρ

(
κ

∂u

∂t
+ v · ∇u

)
= − ∂p

∂X
+

κ

W 2
o

∇ε · (μ∇εu) + ε2κ
∂

∂X

[(
μ

W 2
o

+
ζ

W 2
ζ

)
∇ · v

]
,

(2.18)

ρ

(
κ

∂vτ

∂t
+ v · ∇vτ

)
= − 1

ε2
∇τp +

κ

W 2
o

∇ε · (μ∇εvτ ) + κ∇τ

[(
μ

W 2
o

+
ζ

W 2
ζ

)
∇ · v

]
,

(2.19)

ρT

(
κ

∂s

∂t
+ v · ∇s

)
= − κ

2N2
L

∇ε · (K∇εT ) + κΣ, (2.20)

where

Σ =
μ

W 2
o

[(
∂u

∂y
+ ε2 ∂v

∂X

)2

+

(
∂u

∂z
+ ε2 ∂w

∂X

)2

+ ε2

(
∂w

∂y
+

∂v

∂z

)2

+ 2ε2

([
∂u

∂X

]2
+

[
∂v

∂y

]2
+

[
∂w

∂z

]2)]
+

ε2ζ

W 2
ζ

(∇ · v)2 .

Equations (2.6) and (2.7) for the fluid and solid temperature transform into

ρCp

(
κ

∂T

∂t
+ v · ∇T

)
= βT

(
κ

∂p

∂t
+ v · ∇p

)
+

κ

2N2
L

∇ε · (K∇εT ) + κΣ, (2.21)

ρsCs

∂Ts

∂t
=

φ2

2N2
s

∇ε · (Ks∇εTs) . (2.22)

Furthermore, the conservation of energy (2.8) transforms into

κ
∂

∂t

(
1
2
ρ|vε|2 + ρε

)
= −∇ε ·

[
vε

ε

(
1
2
ρ|vε|2 + ρh

)
− κ

2N2
L

∇εT − κ

W 2
o

vε · τ

]
. (2.23)

Finally, we have the following boundary conditions at the gas–solid interface. First,
for the velocity, we have

v = 0 if Sg = 0. (2.24a)

Second, for the temperature we can write

T = Ts if Sg = 0, (2.24b)

K∇εT · ∇εSg = σKs∇εTs · ∇εSg if Sg = 0. (2.24c)

∇εTs · ∇εSt = 0, if St = 0. (2.24d)

2.4. Small-amplitude and long-pore approximation

We assume a small amplitude A of acoustic oscillations, i.e. the velocity pressure,
density and temperature fluctuations are small relative to their mean value, which can
be used to linearize the equations given above. Since all variables are dimensionless,
we can use the same A to linearize all variables, e.g. the relative pressure or velocity



50 P. H. M. W. in ’t panhuis, S. W. Rienstra, J. Molenaar and J. J. M. Slot

amplitude. Let f be any of the fluid variables (p, v, T , etc.) with stationary equilibrium
profile f0. Expanding f in powers of A, we have

f (x, t) = f0(x) + ARe
[
f1(x)eit

]
+ A2f2,0(x) + A2Re

[
f2,2(x)e2it

]
+ . . . , A � 1,

Furthermore, for the velocity we assume v0 = 0. As the velocity was scaled with the
speed of sound, the obvious choice for A then becomes the acoustic Mach number
Ma , and we will therefore use the following expansion:

f (x, t) = f0(x) + MaRe
[
f1(x)eit

]
+ M2

af2,0(x) + M2
aRe
[
f2,2(x)e2it

]
+ . . . ,

Ma � 1, (2.25)

The first index is used to indicate the corresponding power of Ma , and the index
after the comma is used to indicate the frequency of the oscillation (Swift (2002)).
Here, we assumed a harmonic time-dependence for the first-order fluid variables
with dimensionless frequency 1 (i.e. dimensional frequency ω). Furthermore, for the
second-order fluid variables, we have the combined effect of the second harmonic
f2,2, which oscillates at twice the fundamental frequency, and the steady streaming
part f2,0. We assume that the first harmonic f2,1 is not excited. In our analysis, we
will express the streaming variables in terms of the f0 and f1 variables. The second
harmonic f2,2 is in fact of no interest for the analysis here, but nevertheless it is
included for the sake of completeness.

Note that for the analysis in the next sections, we need to know only the leading-
order approximation of the thermodynamic parameters c, β , Cp and Cv . The index 0
will therefore be omitted.

Additionally, since we also assume ε � 1, we may expand the perturbation variables
fi again to include powers of ε as well. However, this would lead to messy derivations.
Instead, we will assume that ε ∼ Ma , so that the geometric and streaming effect can
be included at the same order. In the end, after all the analysis has been performed,
we can still put ε � Ma or ε � Ma .

We will use an overbar to indicate time-averaging, and brackets to indicate
transverse averaging in the gas, i.e.

f (x) =
1

2π

∫ 2π

0

f (x, t) dt, 〈f 〉(X, t) =
1

Ag(X)

∫
Ag(X)

f (x, t) dA,

where Ag is the area of Ag . The time-average of a harmonic variable always yields

zero, since Re[aej it ] ≡ 0, for any j ∈ �, a ∈ �. However, the time-average of the
product of two harmonic variables is, in general, not equal to zero, as

Re[f1eit ]Re[g1eit ] = 1
2
Re[f1g

∗
1] = 1

2
Re[f ∗

1 g1]. (2.26)

Here the ∗ denotes complex conjugation.

3. Thermoacoustics in a pore
In this section, a coupled system of ordinary differential equations will be derived

for T0, p1, 〈u1〉 and an auxiliary variable V to include the effect of cross-sectional
variations. Furthermore, several Fj -functions will be introduced that contain the
transverse variations of the acoustic variables.
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3.1. Acoustics

We follow an approach similar to that of Arnott et al. (1991). First, we introduce
some auxiliary functions. Define αν , αk and αs as follows:

αν = (1 + i)

√
ρ0

2μ0

Wo, αk = (1 + i)

√
ρ0

K0Cp

NL, αs = (1 + i)φ

√
ρs0

Ks0
Cs

Ns.

Given the differential operators Lj := I−1/α2
j ∇2

τ (j = ν, k) we take Fj (j = ν, k) such
that

Lj [Fj ] = 1, in Ag, (3.1a)

Fj = 0, on Γg. (3.1b)

Note that Arnott et al. (1991) adopt a slightly different notation; F (x; αj ) instead
of Fj . Also there is an additional minus-sign in (3.1a) because they assume a time-
dependence of the form e−it , whereas we follow the conventional notation eit of Rott
(1969) and Swift (1988).

Now expand the fluid variables in powers of Ma as shown in (2.25). Substituting the
expansions into the transverse components of the momentum equation (2.19), putting
ε2 = ηM2

a , and keeping terms up to first order in Ma we find

0 = −∇τp0 − Ma∇τp1.

Collecting the leading-order terms in Ma we find we find that ∇τp0 = 0, so that
p0 is a function of X only. Furthermore, collecting the first-order terms in Ma , we
additionally find that ∇τp1 = 0, so that p1 is also a function of X only.

Collecting first-order terms in Ma , we find that the X-component of the momentum
equation (2.18) transforms into

iMaκρ0u1 = −dp0

dX
− Ma

dp1

dX
+ Ma

κ

W 2
o

∇τ · (μ0∇τ u1) .

To leading order, we find that dp0/dX = 0 and therefore p0 is constant. Next, assume
that the mean temperature T0 is a function of X only. Below, we will show that this
is indeed the case. As a result, we also find that μ0 = μ0(X) and K = K0(X). Then,
collecting the terms of first order in Ma , we find that u1 satisfies

u1 =
i

κρ0

dp1

dX
+

1

α2
ν

∇2
τ u1. (3.2)

With the help of (3.1), we can integrate (3.2) subject to v|Γg
= 0 and write u1 and

dp1/dx as

u1 =
iFν

κρ0

dp1

dX
, 〈u1〉 =

i(1 − fν)

κρ0

dp1

dX
. (3.3)

Next, we turn to the temperature equation. Substituting our expansions into (2.21)
and (2.22), and keeping terms up to first order in Ma , we find

Maρ0Cp(iκT1 + v1 · ∇T0) = iMaκβT0p1 +
κ

2N2
L

∇τ · [K0∇τ (T0 + MaT1)],

iMaρs0
CsTs1

=
φ2

2N2
s

∇τ · [Ks0
∇τ (Ts0

+ MaTs1
)].

To leading order, this reduces to ∇2
τ T0 = ∇2

τ Ts0
= 0. An obvious solution, satisfying

the boundary conditions given in (2.24), is that Ts0
and T0 are equal and independent
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of xτ . In view of the thermodynamic relation (A 8), it also holds that ρ0 and ρs0
are

independent of xτ .
Next, collecting the terms of first order in Ma , we find that T1 and Ts1

can be
obtained from

T1 +
1

κ2ρ0

dT0

dX

dp1

dX
Fν − βT0

ρ0Cp

p1 =
1

α2
k

∇2
τ T1, (3.4a)

Ts1
=

1

α2
s

∇2
τ Ts1

, (3.4b)

where we substituted (3.3) for u1.
To solve the temperature from (3.4), we must first introduce some additional

auxiliary functions. Arnott et al. (1991) solve the differential equations (3.4) using the
boundary condition T |Γg

= 0, which allows a solution as a combination of Fν and
Fk-functions. However, with the boundary conditions given in (2.24), this approach
will not work here. Assume for now the boundary function g := T1|Γg

is known and
choose gp and gu such that

g = gp

βT0

ρ0c2
p1 − gu

κ2(1 − Pr )ρ0

dT0

dX

dp1

dX
.

We can now write for the temperature

T1(x) =
βT0Fkp

ρ0Cp

p1 − Fku − PrFν

κ2(1 − Pr )ρ0

dT0

dX

dp1

dX
, (3.5)

Ts1
(x) =

βT0

ρ0Cp

(1 − Fsp)p1 − 1 − Fsu

κ2(1 − Pr )ρ0

dT0

dX

dp1

dX
, (3.6)

where Fkj (j = p, u) satisfies

Lk[Fkj ] = −1 in Ag, (3.7a)

Fkj = gj on Γg, (3.7b)

and Fsj (j = p, u) is found from

Ls[Fsj ] = −1 in As, (3.8a)

Fsj = 1 − gj on Γg, (3.8b)

∇τFsj · n′
τ = 0 on Γt . (3.8c)

The standard way of solving such boundary-value problems is to make use of
the Green’s functions for the given Helmholtz equations on a cross-section with
appropriate boundary conditions. In Appendix B we will show how the gj and Fij

functions can be determined using Green’s functions.
Using relations (A 5) and (A 8) and substituting T1, we can derive the following

relation for the acoustic density fluctuations:

ρ1 =
1

c2
[γ − (γ − 1)Fkp]p1 +

β(Fku − PrFν)

κ2(1 − Pr )

dT0

dX

dp1

dX
. (3.9)

Finally, we turn to the continuity equation (2.17). Expanding the variables in powers
of Ma and keeping terms up to first order in Ma , we find

iMaκρ1 + Ma

∂

∂X
(ρ0u1) + Maρ0∇τ · vτ1

= 0. (3.10)
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Next, we substitute (3.3). First, note that because of the divergence theorem,∫
Ag

∇τ · vτ =

∫
Γg

vτ · n = 0,

since v|Γg
= 0. Therefore, averaging (3.10) over a cross-section and multiplying with

−iκ , we obtain the following equation as a consistency relation for v1:

κ2〈ρ1〉 +
1

Ag

d

dX

(
Ag(1 − fν)

dp1

dX

)
= 0.

After substituting (3.9) and putting fj = 1 − 〈Fj 〉 (j = ν, kp, ku), we obtain

κ2

c2
[1 + (γ − 1)fkp]p1 +

β(fν − fku)

1 − Pr

dT0

dX

dp1

dX
+ β(1 − fν)

dT0

dX

dp1

dX

+
1

Ag

d

dX

(
Ag(1 − fν)

dp1

dX

)
= 0.

Eventually using

ρ0

d

dX

(
1

ρ0

)
= − 1

ρ0

dρ0

dX
= − 1

ρ0

∂ρ0

∂T0

dT0

dX
= β

dT0

dX
, (3.11)

we obtain the dimensionless equivalent of Rott’s wave equation for general porous
media

κ2

c2
[1 + (γ − 1)fkp]p1 +

β(fν − fku)

1 − Pr

dT0

dX

dp1

dX
+

ρ0

Ag

d

dX

(
Ag

1 − fν

ρ0

dp1

dX

)
= 0. (3.12)

We can now combine (3.3) and (3.12) to find a coupled system of first-order
differential equations for p1 and 〈u1〉. From (3.3), we find

ρ0

Ag

d

dX

(
Ag

1 − fν

ρ0

dp1

dX

)
= −iκ

ρ0

Ag

d

dX
(Ag〈u1〉). (3.13)

Substituting this into (3.12), we find that

d〈u1〉
dX

= − iκ

ρ0c2
[1 + (γ − 1)fkp]p1 −

(
β(fν − fku)

(1 − Pr )(1 − fν)

dT0

dX
+

1

Ag

dAg

dX

)
〈u1〉, (3.14)

and, repeating (3.3), we also have

dp1

dX
= − iκρ0

1 − fν

〈u1〉. (3.15)

To complete the system of equations, it still remains to find an equation for the mean
temperature T0. The next section explains how this can be done.

3.2. Mean temperature by the method of slow variation

Here, we will use (2.23) to determine the mean temperature T0. In calculating T2,0, a
consistency relation will be derived that determines T0. The method adopted here is
also referred to as the method of slow variation (Van Dyke 1987; Mattheij, Rienstra
& ten Thije Boonkkamp 2005).
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Putting ε2 = ηM2
a , we can rewrite (2.23) as follows:

κ
∂

∂t

(
1
2
ρ
(
|u|2 + ηM2

a |vτ |2
)

+ ρε
)

= − ∂

∂X

(
1
2
ρu
(
|u|2 + ηM2

a |vτ |2
)

+ ρuh − M2
a

κηK

2N2
L

∂T

∂X

)

−∇τ ·
(

1
2
ρvτ

(
|u|2 + ηM2

a |vτ |2
)

+ ρvτ h − κK

2N2
L

∇τ T − κμ

W 2
o

u∇τ u

)
+ ∇ · T,

with

T = M2
aηκ

⎡
⎢⎢⎣

μ

W 2
o

(
u

∂u

∂X
+ ηM2

avτ · ∂vτ

∂X
+ v · ∇u

)
+

ζ

W 2
ζ

u∇ · v

μ

W 2
o

(vτ · ∇τvτ + v · ∇vτ ) +
ζ

W 2
ζ

vτ ∇ · v

⎤
⎥⎥⎦ .

Averaged in time, the left-hand side of this equation will drop out. Consequently, on
expanding in powers of Ma and keeping terms up to second order, we can neglect the
T-term and find

∂

∂X

[
M2

aρ0u1h1 + M2
ah0ṁ2 − M2

a

κηK0

2N2
L

dT0

dX

]
+ ∇τ ·
[
M2

aρ0vτ1
h1 + M2

ah0ṁτ2

− M2
a

κK0

2N2
L

∇τ T2,0 − M2
a

κ

2N2
L

K1∇τ T1 − M2
a

κμ0

W 2
o

u1∇τ u1

]
= 0,

where ṁ2 and ṁτ2
are the components in the longitudinal and transverse directions

of the second-order time-averaged mass flux ṁ2,

ṁ2 := ρ0(v2,0 + Re[v2,2e2it ]) + Re[ρ1eit ]Re[v1eit ] = ρ0v2,0 + 1
2
Re[ρ1v

∗
1].

Plugging in relation (2.26) and rearranging terms, we find

K0∇2
τ T2,0 + 1

2
∇τ · Re

[
K∗

1 ∇τ T1

]
+ η

d

dX

(
K0

dT0

dX

)
=

N2
L

κ

∂

∂X
(ρ0Re[u∗

1h1] + 2h0ṁ2)

+
N2

L

κ
∇τ · (ρ0Re[v∗

τ1
h1] + 2h0ṁτ2

− κ

W 2
o

Re[u∗
1∇τ u1]). (3.16)

Similarly, we can show in the solid that (2.22) reduces to

Ks0
∇2
τ Ts2,0

+ 1
2
∇τ · Re[K∗

s1
∇τ Ts1

] + η
d

dX

(
Ks0

dT0

dX

)
= 0. (3.17)

We will now use the flux condition (2.24c) to derive a differential equation for T0.
Time-averaging and expanding (2.24c) in powers of Ma and collecting the second-
order terms in Ma , we find

(K0∇τ T2,0 + 1
2
Re[K∗

1 ∇τ T1] − σKs0
∇τ Ts2,0

− σ 1
2
Re[K∗

s1
∇τ Ts1

]) · ∇τ Sg

= gs(σKs0
− K0)

dT0

dX

∂Sg

∂X
, Sg = 0.
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This condition can be rewritten as

(K0∇τ T2,0 + 1
2
Re[K∗

1 ∇τ T1] − σKs0
∇τ Ts2,0

− σ 1
2
Re[K∗

s1
∇τ Ts1

]) · nτ

= η
K0 − σKs0

|∇τ Sg|
∂Rg

∂X

dT0

dX
= η

(K0 − σKs0
)Rg√

R2
g + (∂Rg/∂θ)2

∂Rg

∂X

dT0

dX
, Sg = 0, (3.18)

where nτ := ∇τ Sg/(∇τ Sg) is the outward unit normal vector to Γg . Similarly, since
n′

τ := ∇τ St /(∇τ St ) is the outward unit normal vector to Γs , we find from (2.24d)

Ks0
∇Ts2,0

· n′
τ + 1

2
∇τ · Re[K∗

s1
∇τ Ts1

] =
ηKs0

Rt√
R2

t + (∂Rt /∂θ)2
∂Rt

∂X

dT0

dX
, St = 0. (3.19)

Now on the one hand, by applying the divergence theorem, substituting the flux

conditions (3.18) and (3.19), and noting that A = (1/2)
∫ 2π

0
R2 dθ and d� = (R2 +

(∂R/∂θ)2)1/2dθ , we find∫
Ag

(
K0∇2

τ T2,0 + 1
2
∇τ · Re

[
K∗

1 ∇τ T1

]
+ η

d

dX

(
K0

dT0

dX

))
dS

+ σ

∫
As

(
Ks0

∇2
τ Ts2,0

+ 1
2
∇τ · Re

[
K∗

s1
∇τ Ts1

]
+ η

d

dX

(
Ks0

dT0

dX

))
dS

=

∫
Γg

(
K0∇τ T2,0 + 1

2
Re[K∗

1 ∇τ T1] − σKs0
∇τ Ts2,0

− 1
2
σRe[K∗

s1
∇τ Ts1

]
)

· nτ d�

+ σ

∫
Γs

(
Ks0

∇Ts2
+ 1

2
Re[K∗

s1
∇τ Ts1

]
)

· n′
τ d�

+ ηAg

d

dX

(
K0

dT0

dX

)
+ ησAs

d

dX

(
Ks0

dT0

dX

)

= η(K0 − σKs0
)
dT0

dX

∫ 2π

0

Rg

∂Rg

∂X
dθ + ησKs0

dT0

dX

∫ 2π

0

Rt

∂Rt

∂X
dθ

+ ηAg

d

dX

(
K0

dT0

dX

)
+ ησAs

d

dX
(Ks0

dT0

dX
)

= η
d

dX

[(
K0Ag + σKs0

As

) dT0

dX

]
. (3.20)

On the other hand, combining (3.16) and (3.17), applying the divergence theorem
and using v|Γg

= 0, we also have∫
Ag

(
K0∇2

τ T2,0 + 1
2
∇τ · Re[K∗

1 ∇τ T1] + η
d

dX

(
K0

dT0

dX

))
dS

+ σ

∫
As

(
Ks0

∇2
τ Ts2,0

+ 1
2
∇τ · Re[K∗

s1
∇τ Ts1

] + η
d

dX

(
Ks0

dT0

dX

))
dS

=
N2

L

κ

∫
Ag

d

dX

(
ρ0Re[u∗

1h1] + 2h0ṁ2

)
dS
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+
N2

L

κ

∫
Ag

∇τ ·
(

ρ0Re[v∗
1h1] + 2h0ṁτ2

− κμ0

W 2
o

Re
[
u∗

1∇τ u1

])
dS

=
N2

L

κ

d

dX
(Agρ0Re[〈u∗

1h1〉] + 2h0Ṁ2) dS, (3.21)

where Ṁ2 := Ag〈ṁ2〉. Finally, equating the right-hand sides of (3.20) and (3.21), we
obtain

d

dX

(
2h0Ṁ2 + Agρ0Re

[
〈h1u

∗
1〉
]

− (K0Ag + σKs0
As)

S2
k

κ

dT0

dX

)
= 0. (3.22)

The quantity within the large brackets is Ḣ 2, the time-averaged total power (or energy
flux) along X, and we find Ḣ 2 is independent of X. Indeed, in steady state, for a cyclic
refrigerator or prime mover without heat flows to the surroundings, the time-averaged
energy flux along X must be independent of X. The approach used in deriving this
equation is quite similar to that of Rienstra (2003).

Substituting the thermodynamic expressions (A 7) and (A 9),

dh = T ds +
1

ρ
dp = CpdT +

1

ρ
(1 − βT ) dp,

into (3.22), we find

Ḣ 2

Ag

= h0

Ṁ2

Ag

+ 1
2
ρ0CpRe[〈T1u

∗
1〉] + 1

2
(1 − βT0)Re[p1〈u∗

1〉]

−
(

K0 + σKs0

As

Ag

)
S2

k

2κ

dT0

dX
. (3.23)

Now first note that

〈|Fν |2〉 = Re [Fν] , 〈FkjF
∗
ν 〉 =

〈Fkj 〉 + Pr〈F ∗
ν 〉 − fbj

1 + Pr

, j = u, p, (3.24)

where

fbj :=
1

Agα2
ν

∫
Γg

Fkj ∇τF
∗
ν · nτ d�, j = u, p.

Furthermore, integrating (A 9), we find that

h0 = Cp(T0 − Tref ),

where Tref is some reference temperature. Substituting (3.5) into (3.23) and using
(3.24), we find after some manipulation

Ḣ 2

Ag

=
1

Ag

Ṁ2Cp

(
T0 − Tref

)
+ 1

2
Re

[
p1u

∗
1

(
1 − βT0

fkp − f ∗
ν + fbp

(1 + Pr )(1 − f ∗
ν )

)]

+
ρ0Cp|〈u1〉|2

2κ(1 − Pr )|1 − fν |2
dT0

dX
Im

[
f ∗

ν +
fku − f ∗

ν + fbu

1 + Pr

]

−
(

K0 + σKs0

As

Ag

)
S2

k

2κ

dT0

dX
. (3.25)

This expression represents the total power along the X-direction (wave direction)
in terms of T0, p1, 〈u1〉, Ṁ2, material properties and geometry. Given Ḣ 2, independent
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of X, we can solve (3.25) for dT0/dX,

dT0

dX
= κ

2Ḣ 2 − 2Ṁ2Cp(T0 − Tref ) − AgRe[a1p1u
∗
1]

Aga2|〈u1〉|2 − (K0Ag + σKs0
As)S

2
k

, (3.26)

where

a1 := 1 − βT0

fkp − f ∗
ν + fbp

(1 + Pr )(1 − f ∗
ν )

, (3.27)

a2 :=
ρ0Cp

(1 − Pr )|1 − fν |2 Im

[
f ∗

ν +
fku − f ∗

ν + fbu

1 + Pr

]
. (3.28)

It is possible to go a step further and improve the expression for the mean
temperature by determining the correction term T2,0. Integrating (3.16) and (3.17)
using an appropriate Green’s function, we can determine T2,0 and Ts2,0

up to some
X-dependent function Tb2,0

(= Tb2,0
(X)). In the same way as the differential equation

(3.26) for T0 followed as a solvability condition for T2,0 and Ts2,0
, we can derive an

ordinary differential equation for Tb2,0
as a solvability condition for the fourth-order

mean temperatures T4,0 and Ts4,0
. Performing this analysis, it is possible to include

transverse variations into the mean temperature profile, since T2,0 does depend on
xτ in contrast to T0. This can be useful when analysing heat-transfer processes in
thermoacoustic heat exchangers or for short regenerators.

3.3. Integration of (3.14), (3.15) and (3.26)

In addition to T0 solving the differential equation given in (3.26), we have that 〈u1〉
and p1 satisfy the differential equations given in (3.14) and (3.15). We have already
introduced the auxiliary functions a1 and a2 in (3.27) and (3.28). To simplify notation
even more, we also introduce

a3 := − i

ρ0c2

[
1 + (γ − 1)fkp

]
,

a4 := − β(fν − fku)

(1 − Pr )(1 − fν)
,

a5 := − iρ0

1 − fν

.

Consequently, we find that we have to integrate the following system of ordinary
differential equations:

dT0

dX
= κ

2Ḣ 2 − 2Ṁ2Cp(T0 − Tref ) − AgRe[a1p1〈u1〉∗]

Aga2|〈u1〉|2 − (K0Ag + σKs0
As)S

2
k

, (3.29a)

d〈u1〉
dX

= κa3p1 +

(
a4

dT0

dX
− 1

Ag

dAg

dX

)
〈u1〉, (3.29b)

dp1

dX
= κa5〈u1〉. (3.29c)

Equations (3.29) form a system of five coupled equations, determining the five real
variables: Re(p1), Im(p1), Re(〈u1〉), Im(〈u1〉) and T0. Given the total energy flux Ḣ 2,
the mass flux Ṁ2, the geometry, and appropriate boundary conditions in X, these
equations can be integrated numerically. For example, if the stack is positioned in a
resonator with the left-hand stack end at distance xL from the closed end, then we
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can impose

p1(0) = P cos(kxL), 〈u1〉(0) =
iP

ρLcL

sin(kxL), T0(0) = TL. (3.30)

where k is the wavenumber. In addition, we can still choose the constant Ḣ 2. In a
steady-state situation without heat exchange with the surroundings, Ḣ 2 = 0. In this
case, the thermoacoustic heat flow is balanced by a return diffusive heat flow in the
stack and in the gas, so that the net heat flow is zero. Alternatively, we can also
impose a temperature TR on the right-hand stack end and look for the corresponding
Ḣ 2 that gives the desired temperature difference.

We see that the total energy flux through the stack, the cross-sectional variations,
the small-amplitude acoustical oscillations and the resulting streaming may cause
O(1)-variations in the mean temperature. The energy flux Ḣ 2 can be changed by
external input or extraction of heat at the stack ends and consequently change the
mean temperature profile. The acoustic oscillations affect the mean temperature via
the well-known shuttling effect (see e.g. Swift 1988). With a non-zero mass flux
Ṁ2, heat will be carried to the hot or cold temperature and thus affect the mean
temperature also. This can either be a loss or contribute to the heat transfer.

Note that the temperature gradient scales with κ and 1/S2
k . Thus, in the limits

κ → 0 (short stack limit) or Sk → ∞ (small velocities; heat conduction is dominating),
the temperature difference across the stack will tend to zero, unless sufficient heat
is supplied or extracted (|Ḣ 2| � 1). Furthermore, the velocity and pressure gradients
also scale with κ , which justifies the assumption of constant stack pressure and
velocity that is commonly applied in the short-stack approximation (see e.g. Swift
1988; Wheatley, Swift & Migliori 1986).

Finally, remember that these equations are not completely independent of the
parameter Ma that we used to linearize; a dimensionless number Sk still appears in
the equations. In (2.16), we showed that

Sk =
κε

NLMa

,

so that there is still a term with Ma present in the equations. Furthermore, the effect
of streaming is, included also. Hence, the theory derived here is not exactly linear as
it is usually claimed to be. Therefore, we prefer to use the term weakly nonlinear to
indicate that there is still a nonlinearity involved. In the section below, we show how
the equations relate to previous papers on this topic.

3.4. Special configurations

The system of ordinary differential equations derived above is valid for arbitrarily
shaped and slowly varying cross-sections and incorporates streaming via the constant
Ṁ2. Note that μ, K , c and Cp may depend on temperature. Below, we show how these
equations compare to previous work on this topic. The difference with the equations
above lies mainly in the chosen geometry or boundary conditions.

For pores with rotationally symmetric cross-sections, we can show that fku and fkp

satisfy

fkp =
fk

1 + εs

, fku =
fk + εsfν

1 + εs

, (3.31)

where

εs :=
1

σ

Agα
2
kfk

Asα2
s fs

, fj := 1 − 〈Fj 〉, j = ν, k, s.
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Furthermore, the expressions for fbu and fku simplify into

fbu =
εsf

∗
ν

1 + εs

(
1 − fν

fk

)
, fbp =

εsf
∗
ν

1 + εs

. (3.32)

As a result, the expressions for a1, . . . , a5 transform into the familiar form (Swift
2002)

a1 := 1 − βT0

fk − f ∗
ν

(1 + Pr )(1 + εs)(1 − f ∗
ν )

, (3.33)

a2 :=
ρ0Cp

(1 − Pr )|1 − fν |2 Im

[
f ∗

ν +
(1 + εsfν/fk)(fk − f ∗

ν )

(1 + Pr )(1 + εs)

]
, (3.34)

a3 := − i

ρ0c2

[
1 +

γ − 1

1 + εs

fk

]
, (3.35)

a4 :=
β(fk − fν)

(1 − Pr )(1 + εs)(1 − fν)
, (3.36)

a5 := − iρ0

1 − fν

. (3.37)

For the simple two-dimensional case of parallel-plate configuration, the auxiliary
functions simplify further into the expressions

fν =
tanh(ανRg)

ανRg

, fk =
tanh(αkRg)

αkRg

,

fs =
tanh(αsRs)

αsRs

, εs =
φ

σ

αkRg tanh(αkRg)

αsRs tanh(αsRs)
.

Note that Rg and Rs may be X-dependent. For constant pore cross-sections, these
expressions agrees with those derived by Rott (1969).

Another simplification arises, if we neglect streaming and change the boundary
conditions (2.24b)–(2.24d) by simply putting T |Γg

= 0. Then Fku = Fkp = Fk and
fbu = fbp = 0, and equations (3.29) simplify into those derived by Arnott et al. (1991)
for arbitrary (constant) pore cross-sections with

a1 := 1 − βT0

〈F ∗
ν 〉 − 〈Fk〉

(1 + Pr )〈F ∗
ν 〉 ,

a2 := − ρ0Cp

(1 − P 2
r )|〈Fν〉|2 Im

[
〈Fk〉 + Pr〈F ∗

ν 〉
]
,

a3 := − i

ρ0c2

[
1 + (γ − 1)(1 − 〈Fk〉)

]
,

a4 :=
β(〈Fν〉 − 〈Fk〉)
(1 − Pr )〈Fν〉 ,

a5 := − iρ0

〈Fν〉 .

We have tested our equations for the standing-wave parallel-plate configuration as
described by Atchley et al. (1990) (TAC#3) with the geometry as given in figure 3.
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Stack

Speaker

xs

Figure 3. Standing-wave resonator closed on the left-hand side and with a speaker on the
right-hand side. The speaker supplies acoustic power and a temperature profile arises in the
stack such that Ḣ = 0.
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Figure 4. The temperature difference TL −TR across the stack as a function of kxs (k = 2π/λ),
the distance of the stack centre xs to the closed end, relative to the wavelength. —, numerical
results, . . . , experimental results –·–, values predicted by Wheatley et al. (1986). We consider
the two cases where the drive ratio Dr is (a) 0.28 % and (b) 1.99 %.

Using MATLAB’s ode45, a Runge–Kutta type solver, we were able to integrate the
equations numerically subject to the boundary conditions given in (3.30). We will
compare our results to the measurements of Atchley et al. (1990) and the theoretical
prediction of Wheatley et al. (1986). Wheatley et al. (1986) obtained an analytic
expression for the temperature difference across the stack when Ḣ = 0, provided the
stack is short compared to the wavelength and has a plate distance that is large
compared to the thermal penetration depth.

Figure 4 shows the temperature difference generated over the stack in the case
Ḣ = 0, and compares it to the measurements and the theoretical prediction. We
consider two cases with drive ratios of 0.28 % and 1.99 %. The drive ratio is the ratio
of the pressure oscillation amplitude and the mean pressure. For the low drive ratio,
the fit with the measurements is remarkably good, even better than the theoretical
predictions. For the high drive ratio, the fit with the theory is still quite good, but
the agreement with the measurements becomes worse. Atchley et al. (1990) attribute
this difference to uncertainties in the thermal conductivity of the stack material or
possible measurement errors. It is not apparent why the theory and numerics match
better for the high drive ratio. However, we do observe that if we increase the plate
length or plate separation, then the agreement becomes rapidly worse.

4. Acoustic streaming
This section discusses steady second-order mass flow in the stack driven by

first-order acoustic phenomena. The analysis is valid for arbitrarily shaped pores
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(a) (b) (c)

Figure 5. Mass streaming in stack. (a) Gedeon streaming. (b) Rayleigh streaming.
(c) Inner streaming.

supporting a temperature gradient. Moreover, the temperature dependence of viscosity
is taken into account.

There are several types of streaming that can occur simultaneously. Three kinds of
streaming are shown in figure 5. Gedeon streaming refers to a net time-averaged mass
flow through a stack pore, i.e. Ṁ �= 0, typical for looped-tube thermoacoustic devices.
Rayleigh streaming refers to a time-averaged toroidal circulation within a stack pore
driven by boundary-layer effects at the pore walls that can occur even if Ṁ = 0. Inner
streaming refers to a time-averaged toroidal circulation in the whole stack, so that the
net time-averaged mass flow can differ from pore to pore both in size and direction.
Inner streaming can, for example, be caused by inhomogeneities at the stack ends.
Streaming effects are usually undesirable, but it was suggested by Swift (2002) that
for some applications it can be useful as a substitute for heat exchangers.

We start with the continuity equation (2.17). If we time-average the equation and
expand in powers of Ma , then the zeroth- and first-order terms in Ma will drop out.
Consequently, we find to leading order

∂

∂X
(ρ0u2,0) + ρ0∇τ · vτ2,0

+ 1
2
Re

[
∂

∂X

(
ρ1u

∗
1

)
+ ∇τ · (ρ1v

∗
τ1
)

]
= 0.

Again applying the divergence theorem and noting that vτ |Γg
= 0, we can average

over a cross-section to find

d

dX

(
Agρ0〈u2,0〉 + 1

2
AgRe[〈ρ1u

∗
1〉]
)

= 0.

The expression between the brackets is Ṁ2, the time-averaged and cross-sectional-
averaged mass flux in the X-direction. It follows that Ṁ2 is constant, which is to be
expected as there is no mass transport through the stack walls. We can now express
〈u2,0〉 in terms of Ṁ2 and the first-order acoustics as follows:

〈u2,0〉 =
1

ρ0

(
Ṁ2

Ag

− 1
2
Re[〈ρ1u

∗
1〉]
)

. (4.1)

Next we turn to (2.19). Expanding in powers of Ma and ε, and averaging in time,
we find to leading order in Ma and ε that

∇τp2,0 = 0,

so that p2,0 = p2,0(X). Subsequently, time-averaging equation (2.18), we find to leading
order

∇2
τ u2,0 − W 2

o

κμ0

dp2,0

dX
= f, (4.2)
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where f is given by

f :=
1

2

W 2
o

κμ0

Re[iκρ1u
∗
1 + ρ0v

∗
1 · ∇u1] − 1

2
Re

[
∇τ ·
(

μ∗
1

μ0

∇τ u1

)]
.

The first-order acoustics collected in f can be interpreted as a source term for the
streaming on the left-hand side, with the last term being characteristic for Rayleigh
streaming. We can also see this as a Poisson equation for the streaming velocity u2,0,
which may be solved using a Green’s function. Introducing the Green’s function Gm

that, for fixed x̂τ ∈ Ag(X), satisfies

∇τGm(x; x̂) = δ(xτ − x̂τ ), xτ ∈ Ag(X), (4.3)

Gm(x; x̂) = 0, Sg(x) = 0, (4.4)

we have

u2,0(x) =
W 2

o

κμ0

dp2,0

dX

∫
Ag(X)

Gm(x; x̂) dŜ +

∫
Ag(X)

Gm(x; x̂)f (x̂) dŜ. (4.5)

Computing the cross-sectional average, we can relate dpm20
/dX to 〈um,20〉 as follows:

dp2,0

dX
=

κμ0

W 2
o

〈u2,0〉 −
〈∫

Ag

Gm( · ; x̂)f (x̂) dŜ

〉
〈∫

Ag

Gm( · ; x̂) dŜ

〉 . (4.6)

Summarizing, given the mass flux Ṁ2 and the first-order acoustics, it only remains
to compute the Green’s function Gm for the desired geometry. Then 〈u2,0〉, dp2,0/dX

and u2,0 can be determined consecutively from (4.1), (4.6) and (4.5).

5. Acoustic power
The time-averaged acoustic power dẆ2 used or produced in a segment of length

dX, second order in Ma , can be found from

dẆ2

dX
=

d

dX

[
Ag〈Re[p1eit ]Re[〈u1〉eit ]〉

]
. (5.1)

Using (2.26), we find to leading order

dẆ2

dX
=

1

2

dAg

dX
Re
[
p1〈u1

∗〉
]
+

Ag

2
Re

[
p1

d〈u1
∗〉

dX
+ 〈u1

∗〉dp1

dX

]
. (5.2)

Substituting (3.15) and (3.14) into (5.2) we find

dẆ2

dX
=

Ag

2

β

1 − Pr

dT0

dX
Re

[
f ∗

ku − f ∗
ν

(1 − f ∗
ν )

p1〈u∗
1〉
]

− Ag

2

κ(γ − 1)

ρ0c2
Im[−fkp]|p1|2

− Ag

2

κρ0Im [−fν]

|1 − fν |2 |〈u1〉|2. (5.3)

The first term contains the temperature gradient dT0/dX and is called the sink or
source term. It will either absorb (refrigerator) or produce (prime mover) acoustic
power depending on the magnitude of the temperature gradient along the stack. This
term is the unique contribution to thermoacoustics. The last two terms are the viscous
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and thermal relaxation dissipation terms, respectively. These two terms arise owing
to the interaction with the wall, and have a dissipative effect in thermoacoustics.

5.1. The effect of pore size

To see the effect of reducing the pore size, we test how (5.3) behaves for small NL

or Wo. Plugging (3.31) and (3.32) into (5.3), we find for the particular case of a
parallel-plate geometry with εs = 0, that

dẆ2

dX
=

Ag

2

β

1 − Pr

dT0

dX
Re

[
f ∗

k − f ∗
ν

(1 − f ∗
ν )

p1〈u∗
1〉
]

− Ag

2

κ(γ − 1)

ρ0c2
Im [−fk] |p1|2

− Ag

2

κρ0Im [−fν]

|1 − fν |2 |〈u1〉|2. (5.4)

For small Wo and NL, we can show that (fk − fν)/(1 − fν) = O(1), Im(fk) = O(N2
L),

Im(fν) = O(W 2
o ) and |1 − fν |2 = O(W 4

o ). Therefore, assuming dT0/dX, p1 and u1 are
O(1) for small NL and Wo, it follows that the acoustic power behaves as

dẆ2

dX
=

dẆ s
2

dX
− dẆ k

2

dX
− dẆ ν

2

dX

= O(1) − O
(
N2

L

)
− O

(
1

W 2
o

)
, Wo, NL � 1, (5.5)

where Ẇ s
2 , Ẇ k

2 and Ẇ ν
2 denote the source/sink term, thermal relaxation dissipation

and viscous dissipation, respectively.
Unsurprisingly, (5.5) shows that the dissipation in a regenerator (NL, Wo � 1) is

dominated by viscous dissipation and in a stack (NL, Wo = O(1)) by thermal relaxation
dissipation. In a regenerator, there is perfect thermal contact, but very small pores and
therefore viscous dissipation will be dominant. In a stack, on the other hand, there
is imperfect thermal contact, but wider pores. Thus, thermal relaxation dissipation is
dominant here. Dissipation is usually undesirable, so NL should be chosen carefully.

As an example, we go back to the standing-wave configuration as modelled by
Atchley et al. (1990). We again consider the situation in which Ḣ = 0, and position
the stack near the closed end of the resonator. For a drive ratio of 2 %, we then
investigate the behaviour of the acoustic power as a function of NL. In figure 6, we
have plotted the acoustic power �Ẇ2 absorbed by the stack together with its source
term and dissipation components. The pore radius Rg is varied and the remaining
parameters are kept the same as in Atchley et al. (1990).

Looking at the graph of the thermal relaxation dissipation �Ẇk
2 , we observe that

�Ẇk
2 tends to zero for decreasing NL, but only until NL ∼ 0.1. Below this value,

�Ẇk
2 starts to grow rapidly again because �Ẇk

2 scales with |p1|2. As the pore size
becomes smaller and smaller, the pressure drop (and also the velocity) in the stack
will become larger and larger, cancelling the effect of the prefactor Im(fk). For the
viscous dissipation �Ẇν

2 , the situation is simpler. Both |u1|2 and its prefactor will
explode for small NL, and therefore �Ẇν

2 too, as the graph clearly shows. The graph
also shows that the source term is maximal for NL close to 1. Below this value, the
viscous dissipation increases dramatically and therefore, for the case considered here,
NL should not be taken smaller than 1. This is why commonly in standing-wave
devices, NL is taken close to 1.
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Figure 6. The acoustic power absorbed by the stack as a function of the Lautrec number for
Ḣ = 0 and a drive ratio of 2 %. The stack is positioned at 5 cm from the closed end. —,
acoustic power; · · ·, source term; - - -, thermal relaxation; –·–, viscous dissipation.

6. Discussion
A weakly nonlinear theory of thermoacoustics for general porous media, applicable

for both stacks and regenerators, has been developed based on a dimensional analysis
and using small parameter asymptotics. Crucial assumptions for the linearization
were Ma � 1 (small amplitudes) and e � 1 (slow longitudinal variation). The theory
is weakly nonlinear in the sense that we include second-order terms in Ma and ε

(streaming and conduction). Moreover, the linearization parameters Ma and ε do
not disappear completely from the system of equations (3.29), but come back in the
dimensionless parameter Sk . The asymptotic theory can easily be extended to include
higher-order terms, so that the higher harmonics can be included as well. Although
this is a logical next step, we have not incorporated them into the analysis, as they
can be treated separately and would only cloud general understanding.

In addition to Ma and ε, we have identified several other dimensionless parameters
(Sk, κ, NL) that are crucial in thermoacoustics. For these parameters, we have indicated
various parameter regimes, each signifying specific geometrical or physical constraints.
Furthermore, we have demonstrated the implications of varying the dimensionless
parameters on the mean temperature gradient and the acoustic power produced or
absorbed by the stack.

Compared to previous work on general porous media (Arnott et al. 1991), we have
extended the model to include acoustic streaming and variations in the pore wall
temperature, while allowing slowly varying cross-sections. Temperature dependence
of thermal conductivity, viscosity, speed of sound and specific heat is taken into
account as well. So far, the derivation of streaming has been restricted to specific
geometries, whereas we consider arbitrary pore cross-sections. Furthermore, previous
work on variable cross-sections has been restricted to wide tubes. Our results, on the
other hand, are also valid for narrow tubes supporting a temperature gradient.

The assumption of slow variation allows us to determine the transverse variation
separately from the longitudinal variation. The longitudinal variation is determined
by the coupled system of five (real) ordinary differential equations given in (3.29).
By systematic construction of the asymptotic theory we have found that the
mean temperature T0 follows as a solvability condition for the higher-order mean



Weakly nonlinear thermoacoustics 65

temperature T2,0, which has not been noted before. This procedure could be repeated
to compute the higher-order temperature profile T2,0 to provide a more accurate
solution. The transverse variation of the acoustic variables is reduced to calculating
Green’s functions of the modified Helmholtz equation for the gas and solid and solving
two additional integral equations. Lastly, the problem of determining streaming has
been reduced to computing a single Green’s function for the Poisson equation on the
desired geometry.

This work is part of a project entitled ‘High-amplitude oscillatory gas flow in
interaction with solid boundaries’ and is financially supported by the Technology
Foundation (STW, project no. ETF.6668). We would like to thank Paul Aben, Mico
Hirschberg, Fons de Waele and particularly our project leader Jos Zeegers for the
valuable discussions and input.

Appendix A. Thermodynamic constants and relations
In dimensional form we have the following thermodynamic relations (taken from

Chapman 2000).

c2 =

(
∂p

∂ρ

)
s

, (A 1)

Cp = T

(
∂s

∂T

)
p

=

(
∂h

∂T

)
p

, (A 2)

Cv = T

(
∂s

∂T

)
ρ

=

(
∂ε

∂T

)
ρ

, (A 3)

β = − 1

ρ

(
∂ρ

∂T

)
p

, (A 4)

c2β2T = Cp(γ − 1), (A 5)

p = ρh − ρε, (A 6)

ds =
Cp

T
dT − β

ρ
dp ⇒ s1 =

Cp

T0

T1 − β

ρ0

p1, (A 7)

dρ =
γ

c2
dp − ρβ dT ⇒ ρ1 =

γ

c2
p1 − ρ0βT1, (A 8)

dh = T ds +
1

ρ
dp ⇒ h1 = T0s1 +

p1

ρ0

, (A 9)

dε = T ds +
p

ρ2
dρ ⇒ ε1 = T0s1 − p0

ρ2
0

ρ1. (A 10)

Appendix B. Green’s functions
In this section, we will first show how the F -functions given in § 3.1 can be computed

using Green’s functions (Duffy 2001). Then we will show how the Green’s functions
can be computed for specific geometries.
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B.1. F -functions

First, we introduce the Green’s functions Gν and Gk . For every X we fix x̂τ ∈ Ag(X),
set x̂ := Xex + x̂τ , and solve for j = ν, k

Lj [Gj (x; x̂)] = −δ(xτ − x̂τ ), xτ ∈ Ag(X), (B 1a)

Gj (x; x̂) = 0, Sg(x) = 0. (B 1b)

Using the Green’s identities, the Fj -function can be expressed in Gj (j = ν, k) as
follows:

Fj (x) =

∫
Ag

Gj (x; x̂) dŜ.

Next, we also introduce the Green’s functions Gs . For fixed x̂τ ∈ As(X) we solve

Ls [Gs(x; x̂)] = −δ(xτ − x̂τ ), xτ ∈ As(X), (B 2a)

Gs(x; x̂) = 0, Sg(x) = 0, (B 2b)

∇τGs(x; x̂) · n′
τ = 0, St (x) = 0. (B 2c)

Given gj , it can be shown that

Fkj (x) =

∫
Ag

Gk(x; x̂) dŜ −
∫

Γg

gj (x̂)∇̂τGk(x; x̂) · nτ d�̂,

Fsj (x) =

∫
Γg

gj (x̂)∇̂τGs(x; x̂) · nτ d�̂.

The hats in the gradients and integrals are used to indicate that the differentiation or
integration is with respect to x̂. It only remains to determine the unknown boundary
functions gu and gp for which we will use the boundary condition (2.24c). If we
impose

∇τFkp · nτ = −σ∇τFsp · nτ , Sg = 0,

∇τ (Fkp − PrFν) · nτ = −σ∇τFsu · nτ , Sg = 0,

then (2.24c) is satisfied to leading order. We now find that gu and gp are found from
the following integral equations:∫

Γg

K(x; x̂)gj (x̂) d�̂ = Ψj (x), Sg(x) = 0, j = u, p, (B 3)

where Ψu, Ψp and K are defined as

Ψp(x) =

∫
Ag

∇τGk(x; x̂) · nτ dŜ,

Ψu(x) =

∫
Ag

∇τ (Gk(x; x̂) − PrGν(x; x̂)) · nτ dŜ,

K(x; x̂) = ∇τ (∇̂τ (Gk(x; x̂) − σφGs(x; x̂)) · nτ ) · nτ .

In most cases, these integral equations are not trivially solved. Arnott et al. (1991)
avoided this problem by setting the wall temperature equal to zero, i.e. gu = gp = 0,
which is a reasonable assumption for most practical cases. In that case, Fsu = Fsp = 1
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n Laplace: ∇2
τ Modified Helmholtz: ∇2

τ − 1/α2
j

1 − 1
2
|xτ − x̂τ | 1

2αj
exp(−αj |xτ − x̂τ |)

2 − 1
2π

log |xτ − x̂τ | 1
2π

K0(−αj |xτ − x̂τ |)

Table 3. Free-space Green’s functions on �n.
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Figure 7. Various stack geometries. (a) Parallel plates. (b) Circular cross-sections.
(c) Rectangular cross-sections.

and Fkp = Fku = Fk as introduced by Arnott et al. (1991). The second case for which
the solution is simple is when Ag is rotationally symmetric, i.e. the case discussed in
§ 3.4. Then K and the gi-functions will be constant on Γg(X) and we find

gi =
Ψi

K
, i = u, p. (B 4)

For the general case, we must resort to the general theory of integral equations.
For example, a solution can be attempted in the form of a sum of orthogonal basis
functions.

B.2. Green’s functions for various stack geometries

There is more than one way to determine the Green’s functions Gj . One way is
using the method of images (Duffy 2001). The method of images adds homogeneous
solutions to the free-space Green’s function in such a way that their sum satisfies
the right boundary conditions. The free-space Green’s functions are given in table 3
and are fundamental solutions of the Laplace and modified Helmholtz equations that
have suitable behavior at infinity.

As an example, we consider the case n = 1 where we have a geometry as shown in
figure 7(a), so that xτ = y. Define

Φj (x, x̂) :=
1

2αj

exp(−αj |y − ŷ|), j = ν, k, s.

We now want to add a homogeneous function such that the resulting function
vanishes at Γg . Introducing sources at the reflection points 2Rg − ŷ and −2Rg − ŷ,
we can cancel the contribution of ŷ on Γg . However, to eliminate the contributions
of 2Rg − ŷ and −2Rg − ŷ we have to introduce even more sources. Continuing in
this way, we can write the Green’s functions Gj (j = ν, k) in the form of an infinite
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sum,

Gj (x, x̂) =

∞∑
k=−∞

(Φj [x; ak] − Φj [x; bk]), j = m, ν, k, (B 5)

where

ak = (X, ŷ + 4kRg), bk = (X, −ŷ + (4k − 2)Rg).

Similarly, we can show that in the solid, Gs is given by the sum

Gs(x, x̂) =

∞∑
k=−∞

(−1)k(Φs[x; ask] − Φs[x; bsk]), (B 6)

where

ask = (X, ŷ + 2k(Rt − Rg)), bsk = (X, −ŷ + 2k(Rt − Rg) + 2Rg).

For n = 2, we could again use a similar strategy as for the case n = 1. Instead we
will employ a different approach that is also used by Duffy (2001) and that solves for
the Green’s functions by expanding in eigenfunctions. For circular pores, this leads
to the following expressions:

Gm(x; x̂) =
1

πR2
g

∞∑
n=−∞

∞∑
i=1

Jn(kni r̂)Jn(knir)

k2
niJ

′2
n (kniRg)

cos[n(θ − θ̂ )], (B 7)

Gj (x; x̂) =
1

πR2
g

∞∑
n=−∞

∞∑
i=1

α2
j Jn(kni r̂)Jn(knir)(

k2
ni − α2

j

)
J ′2

n

(
kniRg

) cos[n(θ − θ̂)], j = k, ν, (B 8)

Gs(x; x̂) =
2

π

∞∑
n=−∞

∞∑
i=1

α2
j Jni(lni r̂)Jni(lnir) cos[n(θ − θ̂)]

εn

(
k2

ni − α2
j

)[
R2

t J′2
ni(lniRt ) − R2

gJ′2
ni(lniRg)

] , (B 9)

where the prime denotes differentiation and

Jni(r) = Yn(lniRg)Jn(r) − Jn(lniRg)Yn(r), εn =

{
2, n = 0,

1, n > 0,

and Jn and Yn are the Bessel functions of the first and second kind, respectively.
Furthermore, the eigenvalues kni and lni are computed from

Jn(kniRg) = 0,
dJn

dr
(lniRt ) = 0.

For rectangular pores, we obtain the following Green’s functions:

Gm =
4

agbg

∞∑
i,n=1

gin

i2π2/a2
g + n2π2/b2

g

, (B 10)

Gj =
4

agbg

∞∑
i,n=1

α2
j gin

i2π2/a2
g + n2π2/b2

g − 4α2
j

, j = k, ν, (B 11)

Gs =
4

(as)(bs)

∞∑
i,nodd

α2
s sin

i2π2/(as)2 + n2π2/(bs)2 − 4α2
s

. (B 12)
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Figure 8. The Green’s function Gj for the Helmholtz equation over a rectangular region with
Dirichlet boundary conditions on the sides when ag = bg = 1, αj = 1 + i, and ŷ = ẑ = −0.3.
(a) Re(Gj ) (b) Im(Gj ).

with eigenfunctions

gin(x; x̂) = sin

[
iπ

y + ag

2ag

]
sin

[
iπ

ŷ + ag

2ag

]
sin

[
nπ

z + bg

2bg

]
sin

[
nπ

ẑ + bg

2bg

]
,

sin(x; x̂) = sin

[
iπ

2

y − ag

as

]
sin

[
iπ

2

ŷ − ag

as

]
sin

[
nπ

2

z − bg

bs

]
sin

[
nπ

2

ẑ − bg

bs

]
,

where as = at − ag and bs = bt − bg . As an example of what such a Green’s function
may look like, we have plotted Gj in figuer 8 as a function of y and z on the unit
square.
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